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Abstract

Evidences have been collected to support the theory that
the instability in the PSR is an electron-proton (e-p)
two-stream instability. This present work is a computer
simulation study of the e-p instability in the PSR. The
simulation is based on numerical solutions of the equa-
tions describing the motion of proton beam’s centrod and
the motion of macro-particles representing the trapped
electrons. The study takes into account the effects of
variable line densities as well as the secondary emission
and the multipacting of electrons. The simulation results
agree well qualitatively with experimental observations
and earlier simulations using the centroid model. It is
found that with only a few percent neutralization, the
PSR beam can become unstable. It is also found that
the enhancement of the instability due to the electron
multiplication may occur after the oscillation of the pro-
ton beam has grown to large amplitude.



  

1 Introduction

Evidences have been collected to show that the PSR insta-
bility is an e-p instability.

The same kind of instability has been previously observed in
Bevatron and ISR.

The basic mechanism of the instability has been understood,
the recent PSR upgrade as well as SNS and ESS are calling
for more detailed understandings.

Earlier simulation program using the centroid model has re-
cently been modified:

• replace the electron centroid by macro-electrons,

• include the secondary emission of electrons due to the
impact of electrons on the beam pipe.

The present emphasis is to study the possibility of multipact-
ing and the effect of electron multiplication on the instability.
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2 The Model and the Numerical Approach

2.1 Model

A proton bunch of length L with a round cross-section of radius
a, traveling with a constant speed v inside a perfect conducting
pipe of radius b.

Linear transverse focusing on protons. Uniformly distribution
of protons in the transverse direction.

The proton bunch is partially neutralized by electrons.

Use a Cartesian coordinate system:

z axis parallel to the proton beam,
y axis perpendicular to the ring,
origin at the center of the beam cross section.

Proton and electron line-densities, λp and λe, depend on z.

Assume the system is unstable in the y-direction only.

Neglect the axial motion of electrons and the synchrotron os-
cillation of protons.
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Study the motion of the proton beam centroid Yp(z, t) = aver-
aged displacement of protons at (z, t), where t = time.

Equation of motion for Yp(z, t):(
∂

∂t
+ v

∂

∂z

)2

Yp + ω2
βYp =

1
γ

ne∑
j=1

Fej
mp
− Cd

(
∂YP
∂t

+ v
∂YP
∂z

)
,

(1)
ωβ = betatron frequency due to the external focusing,
Fej = force due to the jth electron,
γ = (1− v2/c2)−1/2,
c = speed of light,
mp = rest mass of a proton,
Cd = damping constant .
The 2nd term on the RHS is due to the damping caused
by the tune spread.

Neglect the interaction among electrons.

Equation of transverse motion for the jth electron at (yej , z):

d2yej
dt2

=
Fp(yej , z, t)

mej
, (2)

Fp(yej , z, t) = the force due to the proton beam,
mej = the mass of the jth electron.
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2.2 Numerical Approach

Computations are carried out on the moving frame of protons.

ELECTRONS:

ne = nec + new

PIPE

PIPE

N-1 N1 2 3 i + 1ii - 1 N-2.... ..

.... ....

v

PROTON BEAM:

PIPE

PIPE

a
b

L

z

N-1 N1 2 3 i + 1ii - 1 N-2.... ..

........

MACRO-PROTON MACRO-ELECTRON (WALL)

MACRO-ELECTRON (CORE)

Fig. 1: Schematic of the computation setups.
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The proton bunch and the electron cloud are divided into N
slices (grids) each in the z-direction.

Each proton slice contains one macro-proton. The charges and
the masses of macro-protons are assigned according to λp(z).

Each electron slice contains ne macro-electrons.

At creation, electrons have two components:
the wall-electrons (from wall) new, charge cw, mass mew,
the core-electrons nec, charge cc, mass mec,
ne = nec + new.

The acceleration of the jth macro-electron due to the field of
protons is approximated by

Fp(yej , z)
mej

≈
−e2qjλp
2πεomej

(
Yp

b2 − yejYp
+
yej − Yp
a2

)
, for |yej − Yp| ≤ a,

−e2qjλp
2πεomej

(
Yp

b2 − yejYp
+

1
yej − Yp

)
, for |yej − Yp| ≥ a,

(3)

e = unit charge,
qj = (total charge of the jth macro-electron)/e, a variable,
εo = permittivity of the free space,
eqj/mej = e/me = const..
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The force on a macro-proton due to the jth macro-electron is
approximated by

Fej ≈
−e

2qjλp
2πεo

(
yej

b2 − yejYp
+
Yp − yej
R2
e

)
, for |Yp − yej | ≤ Re,

−e
2qjλp
2πεo

(
yej

b2 − yejYp
+

1
Yp − yej

)
, for |Yp − yej | ≥ Re,

(4)

Re = “macro-electron radius” used to avoid singularity.

Eqs. (1) and (2) are solved by using Runge-Kutta-Gill method.

Time step: ∆t = L/(vN).

To simulate the relative drift of electrons:

In every ∆t, advance all electron slices by one grid toward
the tail of the proton bunch and create a new slice at the
head of the proton bunch.

To simulate the electron generation due to the lost protons:

At every time step, use random number to select a slice in
which two wall-electrons are created on the beam pipe.

Total number of macro-particles = const. all the time.
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To model the accumulation of electrons from gas scattering:

Introduce a weight function We(z) for the charge and the
mass of macro-electrons according to

qj = qj(z, t) = cj(z, t)We(z) . (5)

For constant electron generation per proton, then roughly,

We(z) ∝ k +
∫ z

0

λp(z′)dz′ . (6)

To simulate the secondary emission on the wall:

When an impact is detected, qj and mej of the impinging
macro-electron is adjusted (qj/mej = const.) according to
the secondary emission yield (SEY).

Assuming normal incident, the SEY is calculated using:

δts(E0/θ0) = δ̂(θ0)D(E0/Ê(θ0)) , (7)

where
D(x) =

sx

s− 1 + xs
, (8)

δts(E0/θ0) = SEY,
E0 and θ0 = energy and incident angle of the electron,
Ê = energy at maximum D, s ≈ 1.44,
δ̂ = maximal SEY at θ0.
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3 Examples of Numerical Results

3.1 Example A: PSR with a clean gap

Assume a parabolic proton line-density,

λp(z) = 6Nps(1− s)/L , (9)

and a weight function

We(z) = 0.1 + 1.8s2(3− 2s) , so that We(L/2) = 1 , (10)

s = z/L, z = axial distance from the head of the bunch.

L/v ≈ 260ns for PSR.
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,
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/

Fig. 2: The proton line density λp (normalized by Np/L) and the

electron weight function We considered in the examples. The gap
is between τ = 260 ns and τ = 360 ns.

8



   

Initial fraction of neutralization, χ ≈ 4% at z ≈ 0.5L.

PSR parameter values: γ = 1.85, a = 1.5cm, b = 5cm,
circumference C = 90m, Np = 2.6× 1013, and νy = 2.3.

The maximal electron bouncing frequency at these
parameter values ≈ 185 MHz.

Chose N = 520, ∆t = 0.5ns, and Cd = 5× 104/s.

Assume initially Yp(z, 0) = 0.076 sin[(πz)/m)]cm, and
dYp/dt = 0.

Corresponds to a wave of 126 MHz when carried by the
traveling proton beam.
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Fig. 3: The initial perturbation on Yp .
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Initially, 23 core-electrons and 2 wall-electrons per slice, evenly
distributed from wall to wall (-5cm to 5cm).

Maximum number of macro-electrons per slice = 29.

All electrons start at rest, and Re = 0.7cm.

Initial charge assignment of macro-electrons:

cc = [eλpχ/(nec + 0.5new)]z=L/2 , and cw = cc/2 .

For wall-electrons created by protons after t = 0:

cw = cc(t = 0)/2 .

Secondary Emission: δ̂ = 2.0, Ê = 295eV.
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Fig. 4: (a) A snapshot of Yp taken after tracking motion for 30 proton

revolutions in the PSR (≈ 10.8µs), (b) the dipole moment density Dp =
λpYp at the 30th revolution shown after normalization by Np/L, and (c)

the snapshot of the quantity
∑
jcj/cc along the proton bunch taken at

the same time as Yp (
∑
jcj/cc >26⇒ electron multiplications).
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Fig. 5: (a) A snapshot of Yp taken after tracking motion for 120 proton

revolutions in the PSR (≈ 43.2µs), (b) the dipole moment density Dp =
λpYp at the 120th revolution shown after normalization by Np/L, and

(c) the snapshot of the quantity
∑
jcj/cc along the proton bunch taken

at the same time as Yp (
∑
jcj/cc >26⇒ electron multiplications).
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3.2 Example B: Multiplication threshold

Use the same initial conditions as in Example A but smaller
perturbation.

Vary the beam intensity and check every time step in first turn
to look for possible electron multiplication.

Observed multiplication at the tail of the bunch when Np ≥
1.3× 1013.

ΣjCj
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τ   (= z/v)  (ns)

Fig. 6: The initial condition of the quantity
∑
jcj/cc (proportional

to the real number of electrons) as function of the time behind the
head of the proton bunch. The system parameter values are the
same as in the last example.
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Fig. 7: The quantity
∑
jcj/cc as function of the time behind the

head of the proton bunch for (a) below and (b) above the multipact-

ing threshold. The system parameter values are the same as in the
last example. Np ≈ 1.04×1013 in (a) and Np ≈ 1.69×1013 in (b).

The threshold is about Np ≈ 1.3×1013. Above the threshold, elec-

tron multiplications (
∑
jcj/cc >26) occur in the tail of the proton

bunch.
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3.3 General Results

• It takes only a few percent neutralization for e-p instability
to develop in PSR.

• Computed short growth time consistent with observations.

• An empty gap does not always ensure stability. Multi-turn
trapping of electrons is not a necessary condition for insta-
bility.

• Roughly, the wavelength (or frequency) of the e-p oscillation
∝
√
λp . Wide frequency spectrum for non-uniform λp.

• The instability grows in time and in space.

• For stainless steel SEY of δ̂ = 2.0 at Ê = 295eV, multipact-
ing initially occurs only in the tail of the proton bunch.

• Appreciable multipacting occurs in the middle and the later
part of the bunch after proton oscillation has grown to large
amplitude ( > 0.5cm).
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4 Conclusions

• Numerical simulations have been carried out for the e-p in-
stability of the PSR beam by solving the equations of motion
for the centroid of the proton beam and macro-electrons.

• Updated simulations include the production of secondary
electrons on the beam pipe.

• Results are consistent with the earlier simulations using the
centroid model and are qualitatively in good agreement with
experimental observations.

• A few percent of neutralization is sufficient for the e-p in-
stability to develop in PSR. Computed short growth time
consistent with observations.

• An empty gap does not always ensure stability. Multi-turn
trapping of electrons is not a necessary condition for insta-
bility.

• For stainless steel SEY of δ̂ = 2.0 at Ê = 295eV, multi-
pacting initially occurs only in the tail of the proton bunch.
For PSR, the threshold for multiplication is about Np ≥
1.3 × 1013. Appreciable multipacting occurs in the middle
and the later part of the bunch after proton oscillation has
grown to large amplitude ( > 0.5cm).
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